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An improved COFRAC (COmité FRançais d’ACréditation) method for the analysis and evaluation of
the quality of honeys by high-performance anion-exchange chromatography of sugar profiles is
proposed. With this method, both minor and major sugars are simultaneously analyzed and the
technique is integrated in a new chemometric approach, which uses the entire chromatographic sugars
profile of each analyzed sample to characterize honey floral species. Sixty-eight authentic honey
samples (6 varieties) were analyzed by high-performance anion-exchange chromatography-pulsed
amperometric detection. A new algorithm was developed to create automatically the corresponding
normalized data matrix, ready-to-use in various chemometric procedures. This algorithm transforms
the analytical profiles to produce the corresponding calibrated table of the surfaces or intensities
according to retention times of peaks. The possibility of taking into account unknown peaks (those
for which no standards are available) allows the maximum chemical information provided by the
chromatograms to be retained. The parallel application of principal component analysis (PCA)/linear
discriminant analysis (LDA) and artificial neural networks (ANN) shows a high capability in the
classification of the analyzed samples (LDA, 93%; ANN, 100%) and a very good discrimination of
honey groups. This work is the starting point of the elaboration of a new system designed for the
automatic pattern recognition of food samples (first application on honey samples) from chromato-
graphic analyses for food characterization and adulteration detection.
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INTRODUCTION

Honey is a natural product that is produced throughout the
world. It presents an ecological image of natural wholesomeness
and reassurance in the minds of consumers, even though
sporadic infant botulism cases have appeared from time to time
in some European countries such as Italy, Spain, Norway, and
Germany over a period of 23 years (1). Sugars and water
represent the main chemical constituents of honey (>95%),
whereas proteins, flavors and aromas, pigments, vitamins, free
amino acids, and numerous volatile compounds constitute the
minor components. This small percentage of the overall
composition is mainly responsible for honey’s organoleptic and

nutritional properties. Many studies have been reported on the
chemical constituents of honeys such as sugars (2-8), flavor
and aroma compounds (9, 10), terpenoids, norisoprenoids (11,
12), flavanoids (13-15), 5-hydroxymethyl-2-furaldehyde (HMF)
(16), phenolic compounds (17), aliphatic compounds, organic
acids (18-21), and amino acids (22-29).

Specific approaches have been developed for characterizing
food products, particularly for honeys, and for detecting their
adulteration (addition of cane or beet sugars and/or sugars
obtained from starch hydrolysis) (30,31). The literature shows
that numerous authors have tried to characterize honey samples
by peak integration from measurements of parameters such as
sugars, organic acids, volatile compounds, and flavonoids (32,
36), but few studies have used global fingerprints, such as
chromatograms, in a pattern recognition procedure to character-
ize honey samples. To the best of our knowledge, no previous
study about the use of the full sugar profiles [by high-
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performance anion-exchange chromatography-pulsed ampero-
metric detection (HPAEC-PAD)] of honeys has been reported
for floral origin characterization and adulteration detection.

The aim of this work is the development of an automated
tool based on sugar analysis, using pattern recognition tech-
niques such as artificial neural network (ANN) and classical
chemometric tools [principal component analysis (PCA) or linear
discriminant analysis (LDA)] to evaluate the quality of the
honeys and to detect their possible adulteration by exogenous
sugars. This paper presents the first steps in this study: the
establishment of the chromatographic technique, the manipula-
tion of the chromatographic data, and the comparison of
performance of the chemometric tools with respect to charac-
terization of the honey by floral species.

MATERIALS AND METHODS

Samples.Samples of lavender, robinia (false acacia), fir, rosemary,
chestnut, thyme and TTF (multifloral) honeys were obtained from
French beekeepers during the years 2000 and 2001. The samples were
collected from different French geographic regions according to their
floral species. The botanical origin of each sample was certified by
quantitative pollen analysis according to the procedure of Louveaux et
al. (37) and confirmed by sensory analysis. Syrup samples were ob-
tained from French industrial suppliers (Dorsman S.AR.L.; Ickovich
S.A.).

Preparation. The samples were prepared following a modified
COFRAC (French Accreditation Committee) procedure (program 118).
One hundred milligrams of honey was weighed, diluted, and adjusted
to 100 mL in a volumetric flask with ultrahigh-quality (UHQ) water
(18.2 mΩ). After homogenization, 1 mL of the honey solution was
diluted with UHQ water to 10 mL in a volumetric flask.

To proceed to the automated calibration of the sample chromato-
grams (see Mathematical Pretreatment of the Chromatograms), calibra-
tion standards were also prepared and analyzed before each sample
series of honeys. Three calibration standards were prepared at three
concentration levels for 13 honey sugars (see Anion-Exchange Chro-
matography). As well, these calibration standards provide reference
chromatograms of the main sugars of honeys.

Anion-Exchange Chromatography. Samples were analyzed by
HPAEC on a Dionex 500 system (Dionex Corp.) supplied with a pulsed
amperometric detector (PAD). The system was equipped with a
CarboPac column (packed silica appropriate for mono-, di-, tri-, and

oligosaccharide analysis). Sodium hydroxide solution (NaOH, 250 mM
in water) was used as the eluant. Analyses were performed under
isocratic mode (% water/% NaOH) 48:52). Flow rate was set to 0.6
mL/min. To minimize carbonate formation in the system, which leads
to a dramatic reduction of the retention times, a small amount of
Ba(CH3COO)2 (4 mM) was added to the alkaline eluant. Cataldi et al.
(38) have recently shown that this practice inhibits the progressive
occupancy of the active sites of the column. Classical PAD was adopted
(with a gold working electrode) as the detection mode. Current was
measured and integrated with respect to time to give a net faradic charge
(q) for the detection cycle. By this method, the response is measured
in coulombs (39). All experiments were conducted at room temperature.
The calibration was performed with three standard solutions obtained
from the dilution of 13 standard sugars in powder form (Aldrich S.A.).
These standard solutions were made in order to represent the natural
sugar proportionality of honeys in trehalose [R-D-Glup-(1f1)-â-D-Glup],
glucose (â-D-Glup), fructose (â-D-Frup), melibiose [R-D-Galp-(1f6)-
D-(1f1)-D-Glup], isomaltose [R-D-Glup-(1f6)-D-Glup], sucrose [R-D-
Glup-(1f4)-D-Fruf), turanose [R-D-Glup-(1f3)-D-Fruf], palatinose [R-D-
Glup-(1f6)-D-Fruf], melezitose [R-D-Glup-(1f2)-â-D-Fruf-(3f1)-R-D-
Glup], raffinose (Fru-Glu-Gal), nigerose [R-D-Glup-(1f3)-D-Glup],
maltose [R-D-Glup-(1f4)-D-Glup], and erlose [R-D-Glup-(1f4)-â-D-
Gluf-(1f2)-â-D-Fruf]. The evaluation of the sugar content of honey
samples was obtained from calibration curves of each sugar contained
in the standard solutions (not shown here). With these chromatographic
conditions, the last sugar (erlose) is detected after∼32 min (cf.Figure
1), and the analysis is ended at 35 min.

Mathematical Pretreatment of Chromatograms.Because injection
causes some perturbation at the beginning of each chromatogram, the
time period from 0 to 4 min was removed from all chromatograms.
Despite these precautions, the results obtained showed shifts in the
retention times (<4%) resulting in some classification difficulties. To
overcome this problem, we developed an algorithm allowing the
calibration of all chromatograms on the basis of the utilization of the
calibration standards.

Indeed, two peaks (at least) are commonly present in an HPAEC-
PAD profile of honey: fructose and sucrose (cf.Figure 1).

Data Matrix. The initial chromatographic files are exported under
ASCII format from the Dionex software and considered as [2c, 2400r]
vectors (time/s× intensity/nC). As the time column is the same for all
of the samples, this column was not used for the data matrix
construction. A sample data matrix is defined as Cx) {Msugars ×
Nsamples), whereN represents the number of honey samples arranged
by row and M represents the number of sugars selected in the

Figure 1. (Top) Calibration standard chromatogram obtained by diluting 200 µL of standard solution in 10 mL of UHQ water. (Bottom) Histogram plot
of the transformed calibration standard chromatogram after the calibration process. The same treatment is applied to sample files.
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chromatograms arranged by column (cf. Automated Calibration of the
Chromatograms). In this work,N ) 68 samples consisting of{robinia,
7; lavender, 11; rosemary, 10; TTF-multifloral, 10; chestnut, 16; and
fir, 14} andM ) 13 sugars (cf.Figure 1). However,M can be extended
as described in ref40 even if the sugar peak in the chromatogram is
not identified and labeled during standard calibration.

Automated Calibration of the Chromatograms. This procedure
was implemented to remove potential shifts in the retention times
observed during the analyses due to a possible carbonation of the
sodium hydroxide or the aging of the chromatographic system. The
program can automatically identify at least 13 honey sugars and redraw
the chromatogram by positioning the sugars in their relative locations.
The procedure transforms each signal proportionally to the original peak
intensity or area (cf.Figure 1). In a group of authentic honey
chromatogram files, the software performs the calibration and creates
a data matrix where the intensity (or the area) of each sugar’s peak is
recorded. In the case of the absence of any of the 13 sugars, a value of
0 is assigned. This data matrix was used to perform a comparison
between multivariate treatments and an artificial neural network (ANN)
approach. Full details about this calibration procedure are given in ref
40.

Multivariate Procedures (PCA and LDA). All treatments con-
ducted in this study were performed with Statistica v 6.0 (from StatSoft,
Paris, France).

The use of multivariate methods such as PCA and LDA allows the
identification of the most important directions of variability in a
multivariate data matrix, and the results are presented as two-
dimensional plots.

PCA transforms the original variables into new axes, called principal
components (PCs), which are orthogonal, in such a way that the data
presented in those axes are uncorrelated with each other; PCA expresses
as much as possible the total variation of the data in only a few principal
components and in decreasing order in terms of the amount of the
variation. Score plots represent the projections of the objects (samples)
in the planes defined by the PCs, whereas loading plots represent the
projections of the original variables in the same planes. Score and
loading plots can be represented separately or in the same drawing.
Objects that are projected close to each other in the score plots have
similar characteristics, and, for instance, samples to the right in the
score plot have high values for variables placed to the right in the
loading plot. The same holds for samples placed in other locations of
the graph. The variables that are projected close to each other in the
loading plots are positively correlated, whereas variables lying opposite
to each other tend to have a negative correlation. The more a variable
is away from the axis origin, the better its contribution can be considered
as a major contribution in the statistic model generated by the PC
analysis.

LDA is used to determine which variables discriminate between two
or more naturally occurring groups. This mathematical procedure
maximizes the variance between groups and minimizes the variance
within each group in such a way that outsiders can be detected more
easily than by PCA. Another major purpose to which LDA is applied
is the issue of predictive classification of cases.

LDA automatically computes classification functions that can be used
to determine to which group each case most likely belongs. There are
as many classification functions as there are groups (41). Each function
allows the computation of classification scores for each case with respect
to each group. LDA can be usefully completed by a canonical analysis
to obtain the canonical scores plots that provide a visual organization
of the sample scores and facilitate the interpretation of the results.

Artificial Neural Networks. Neural networks are nonlinear data
processing systems capable of predicting new observations (on specific
variables) from other observations (on the same or other variables). A
neural network makes use of a dataset (training set) to adjust itself on
the salient features of the set and develop a predictive model. Basically,
each neuron receives signals from a large number of other neurons
and processes them by weighted summation and nonlinear transforma-
tion to yield a signal output sent to other neurons as input. Therefore,
they can be used where some information is known and some unknown
information (42,43) has to be inferred. Neurons can be interconnected
following various architectures, but the most commonly used is made

of several layers. In this work, the input layer of the networks receives
the rows of data matrix previously described, and the output layer
contains the data related to the samples’ groups.

The first step is to design a specific network architecture (which
includes a specific number of “layers”, each consisting of a certain
number of “neurons”). Software is available that applies artificial
intelligence techniques to aid in finding “the best” network architecture
(44) in such a way that the size of the network matches the nature of
the investigated phenomenon. In this work, different types of feedfor-
ward networks were applied on the dataset: multilayer perceptron
(MLP), radial basis function network (RBF), and linear neural network
(LNN). The complete theory of the ANNs will not be developed here
and can be found in the literature (45, 46) as well as its many
applications (47-52).

RESULTS AND DISCUSSION

Performance of the System.Before the chromatograms were
exported, the performance of the chromatographic apparatus was
investigated. The aim was to evaluate both the detection limit
(micrograms per liter) and the quantification limit (micrograms
per liter) for the full set of identified sugars. This evaluation
was carried out following the classical chromatographic meth-
odology, consisting of the calculation of the signal to noise ratio
(R ) S/N). This ratio is determined for each peak (sugar) of
the standard calibration chromatogram (13 sugars)< and the
detection limit (DL) was calculated from the formula

whereN ) noise of the acquisition) background (nC),S )
signal (nC), [sugar]) concentration for a given sugar [µg/L].

The quantification limit (QL) was calculated from the DL
by the following formula:

Good performances (data are not presented here but are
available on request to the authors) were obtained by our system
Dionex 500 for analyzing honey sugars. In particular, these
results show that glucose has the best S/N ratio (R ) 2002.2)
and erlose the worst (R ) 73.9). The results allow the
identification of those sugars that are most easily detectable by
the system and with the best accuracy. The QL is the best for
glucose (26.3µg/L) and the worst for erlose (189.5µg/L). The
values for other sugars are distributed between these two limits.

Multivariate Methods. The first step of the analysis was
the application of PCA and LDA to data containing all samples
(robinia, lavender, rosemary, chestnut, fir, and TTF-multifloral
honeys). PCA failed to obtain two or three PCs with variance
large enough to successfully separate the sample groups.
Furthermore, the discriminant analysis (forward method) gave
a classification rate of<90%. This result, presented inFigure
2, is due to similarities between rosemary and TTF-multifloral
honeys (the squared Mahalanobis distance between these two
groups was 3.288, whereas it was>12 between each other).
Terrab et al. (36) obtained similar results on Moroccan honeys
by GC-MS analysis of sugars, and they observed a poor
discrimination between honeydew honeys and nectar honeys.
The application of PCA gave worse results (cumulative variance
≈ 50%), but the approach employed by these authors concerning
the extraction of information from chromatograms was not
comparable with ours.

Table 1 shows the results obtained by stepwise discriminant
analysis applied on the complete data matrix (six varieties). It
can be seen that the poorest classification was obtained for TTF-
multifloral honeys (60%), which needs to be treated separately

DL (µg/L) ) 3N[sugar]/S (1)

QL (µg/L) ) 5 × DL (2)
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from others. It can also be seen that the fir and chestnut honey
groups were perfectly classified by the LDA procedure (100%).
Therefore, to improve the results, we chose to perform PCA,
LDA, and ANN separately on clear honeys (robinia, lavender,
and rosemary) and on dark honeys (fir, chestnut, and TTF-
multifloral). These two types of honeys are easily distinguished
by visual inspection using the Pfund scale (53).

Applied separately on clear honeys, PCA gave (plot not
shown here) a less effective result. The four first PCs (with
eigenvalues> 1) explain only 73% of the total variance. This
result needs no further comment.

Table 2 shows the eigenvalues obtained by PCA applied to
dark honeys. The first four PCs explain∼80% of the total
variance, and the three honey groups of this type are relatively
well distinguished by their sugar content. In other words, 80%
of the total variance of the 13 variables considered could be
condensed into four new variables (PCs). The score plot (Figure

Figure 2. Plot of discriminant scores after linear discriminant analysis of 68 French honeys.

Figure 3. Plot of first and third PC scores vectors for the classification of honeys according to their floral type.

Table 1. Classification Matrix for Six Varieties of (Clear and Dark)
Honeys Obtained by LDA

%
correct robinia lavender rosemary TTF chestnut fir

robinia 87.50 7 1 0 0 0 0
lavender 90.91 0 10 1 0 0 0
rosemary 88.89 0 1 8 0 0 0
TTF 60.00 1 0 3 6 0 0
chestnut 100.00 0 0 0 0 16 0
fir 100.00 0 0 0 0 0 14
total 89.71 8 12 12 6 16 14

Table 2. Results of Principal Component Analysis

PC eigenvalue % total variance cumulative variance (%)

1 4.446329 37.0527 37.0527
2 2.280527 19.0043 56.0571
3 1.690544 14.0878 70.1450
4 1.142643 9.5220 79.6670
5 0.702186 5.8515 85.5186
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3) shows the location of the objects in the multivariate space
of the first two PCs. It can be seen that the scores are arranged
essentially in three groups: they include fir, chestnut, and TTF-
multifloral honeys, respectively.

The circled samples inFigure 3 correspond to outlier
samples. The results of the mellissopalynology analysis reveal
that these samples show some chestnut, sunflower, and/or clover
pollens in their main pollen spectrum in significant amounts,
indicating a contamination by the corresponding nectars. This
explains the location of these samples in the PC scores vectors
plot.

Tables 3and4 show the total classification rate obtained by
LDA applied on clear and dark honeys, respectively. Ninety-
three percent of the clear honey samples were correctly
classified, and 100% correct classification was obtained for
rosemary honey samples. Moreover, dark honey samples were
perfectly classified as shown inTable 4. These results are
partially similar to those obtained by Mateo et al. (54), who
analyzed the sugars content of different Spanish unifloral honey
types (rosemary, orange blossom, lavender, sunflower, euca-
lyptus, heather, and honeydew) by gas chromatography. In their

work, they showed that honeydew, sunflower, heather, and
eucalyptus honeys were classified (using LDA) with 100, 92.9,
83.3, and 75% correct classifications, respectively. However,
for the remaining honey types, particularly rosemary and
lavender honeys, which are in common with our study, the
percentages of successful classifications remained weak (53.8-
69.2%) compared to that given in our study. This can be
explained by the number and type of sugars selected by Mateo
et al.: 10 sugars of which maltulose and kojibiose do not seem
to be discriminating of selected varieties. [In our study, we
selected 13 sugars including trehalose, characteristic of honey-
dew honeys (dark honeys) and raffinose+ palatinose, which
were found to be characteristics of nectar honeys (clear honeys).]
Moreover, Mateo et al. considered in their study both honeydew
and nectar honeys in the same dataset, but we demonstrated
here that results are significantly improved by considering
honeydew and nectar honeys separately.

Table 3. Classification Matrix for Clear and Dark Honeys Obtained by
LDA

% correct robinia lavender rosemary

robinia 87.50 7 1 0
lavender 90.90 0 10 1
rosemary 100.00 0 0 9
total 92.86 7 11 10

Table 4. Classification Matrix for Clear and Dark Honeys Obtained by
LDA

% correct TTF chestnut fir

TTF 100.00 10 0 0
chestnut 100.00 0 16 0
fir 100.00 0 0 14
total 100.00 10 16 14

Figure 4. Separation of clear honeys using linear discriminant analysis: plot of discriminant scores.

Table 5. Classification Functions for Clear and Dark Honeys Obtained
by LDA

variable robinia lavender rosemary

fructose −0.619 −7.496 −8.692
maltose −5.824 −3.720 −8.097
palatinose 26.725 20.207 26.412
raffinose −477.088 −430.819 −495.562
sucrose 1.138 2.315 2.541
erlose −2.089 −6.552 −11.584
constant −59.377 −50.702 −64.658

variable TTF chestnut fir

trehalose −3.357 −1.081 15.444
fructose 1.295 6.888 −5.884
palatinose −2.087 4.110 −0.309
sucrose −6.016 7.346 4.992
raffinose 0.124 −3.797 4.079
melezitose −0.971 −1.978 6.019
maltose −1.205 −9.716 −1.280
glucose 1.415 0.169 −1.874
melibiose 0.641 1.683 −1.509
nigerose −0.936 1.849 −0.448
constant −5.274 −9.583 −23.278
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Three discriminant functions were extracted for both clear
and dark honeys, one function per group of honey.

Table 5 presents the variables used to build the discriminant
functions. These variables were selected in terms of their Wilk’s
Lambda values, which indicate the contribution of each variable
to the discrimination. In this case, a variable having a Wilk’s
Lambda value of<0.06324 (clear honeys) or<0.01006 (dark
honeys) has not been selected to build the discrimination
functions. It can be seen that raffinose and palatinose are the
most powerful parameters in the discrimination of clear honeys,
followed by maltose, erlose, sucrose, and fructose for robinia
honey; fructose, erlose, maltose, and sucrose for lavender honey;

erlose, fructose, maltose, and sucrose for rosemary honey; and
sucrose, maltose, and trehalose for TTF-multifloral, chestnut,
and fir honeys, respectively. These results are in agreement with
what is commonly expected for clear and dark honeys, concern-
ing the analysis of sugars relative importance. It should be noted
that these results do not mean that the sugars having the best
discriminant power have also the highest content.Table 5shows
the contribution of other sugars in the constructed discriminant
functions for the dark honeys.

Figures 4 and5 show the results obtained by LDA (plot of
the discriminant scores).Figures 6and7 show the contribution
of each variable to the two roots depicted inFigures 4 and5.

Figure 5. Separation of dark honeys using linear discriminant analysis: plot of discriminant scores.

Figure 6. Contribution of variables to roots 1 and 2 in Figure 4 (clear honeys).

Figure 7. Contribution of variables to roots 1 and 2 in Figure 5 (dark honeys).
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The standardized coefficients of the root 1 variables are ranked
according to their individual contribution. One can see, for
example, that for clear honeys the fructose, maltose, and
palatinose variables have the highest contribution in roots 1 and
2, whereas for dark honeys the variables presenting the highest
contribution are sucrose, palatinose, fructose, raffinose, trehalose,
and melezitose.

Artificial Neural Networks. The results presented here
constitute, to our knowledge, the first application of ANNs to
the recognition of the floral species of honeys. To compare the
performance of a neural network approach against the multi-
variate procedures, we tested 500 different networks and the
100 best networks were retained. The criterion used to select
networks for retention was that of balancing performance against
diversity. Three types of networks were investigated in a
classification process: linear, radial basis function (RBF), and
three- and four-layer perceptron (MLP3 and MLP4). The highest
confidence was used as the classification thresholds for all
networks tested. The internal structure complexity (number [min/
max] of hidden units) of the selected network types is the
following: RBF [1/17]; MLP3 [1/13]; and MLP4 [1/13].

As for the multivariate approach, we applied ANNs on a full
set of honey samples to see whether it was possible to find a
network capable of classifying all samples with a good level of
classification. The algorithms used for training the MLP
networks are back-propagation (train set) and conjugate gradient
descent (select set and test set) because they are described as
being well suited for this type of network. For the RBF and

linear networks, the training algorithms used wereK means
(KM; for train set),K nearest neighbor (KNN; for select set),
and pseudo-invert (PI; linear least squares optimization, for test
set) and PI (for train, select, and test sets), respectively. Over
the 100 retained networks, only four (MLP networks) showed
a total classification rate (mean of train set+ select set+ test
set results) near or equal to 90% of good classification. No other
presented a better classification rate.Table 6 shows the results
obtained by these four networks with the associated error for
the train, select, and test sets.

The best RBF and linear networks present a total classification
rate of 69.6 and 78.4%, respectively. This result tends to show
that MLP networks are better suited for classifying HPAEC
profiles of honey samples from the data matrix generated by
our previously described algorithm.

The results were substantially improved when clear honeys
were separated from dark honeys as was done during the
multivariate analysis. Of 25 retained networks (100 tested), 10
MLP networks presented a perfect classification rate (100%)
but differed from their train, select, and test errors.Tables 7
and8 present the main characteristics of the best network for
clear and dark honeys, respectively.

As shown inFigure 8, the more compact (with the minimum
number of hidden layers and hidden units) the network

Table 6. Performances of the Four Best Neural Networks Retained
from 500 Tested

errorno. of networks/
500 tested

network
structure

total CRa

(%) train select test

76 13:13-11-13-6:1 89.07 0.091 0.844 1.063
78 13:13-13-13-6:1 90.07 0.096 0.840 2.245
91 13:13-13-10-6:1 89.88 0.100 0.784 1.719

107 13:13-13-13-6:1 90.07 0.0007 0.720 2.414

a Total classification rate.

Figure 8. Representation of the train error for the 10 best MLP networks in terms of internal complexity (15−29 units dispatched over one or two hidden
layers).

Table 7. Description of the Best MLP Neural Network Used for
Classifying Clear Honey Samples

errorno. of networks/
100 tested

network
structure

total CR
(%) train select test

98 6:6-9-3:1 100.00 0.000007 0.0745 0.000016

classification robinia lavender rosemary

total 8 11 9
correct 8 11 9
wrong 0 0 0
unknown 0 0 0
correct (%) 100 100 100
wrong (%) 0 0 0
unknown (%) 0 0 0
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architecture, the higher is the performance of the selected
network (with a lowest select error). In this case, the best
network was an MLP3 net, whereas for the full set of samples
an MLP4 net was the best. This can be explained by a reduction
of the overlap between honey sample groups and, therefore,
the structure of the network tends to diminish to lead to a smaller
network having a good discriminating power.

The structure of the best neural network found for dark honeys
is {9:9-11-12-3:1}, that is an MLP4 network. The classification
and the prediction performances are perfect, and the three floral
species (TTF, chestnut, and fir) are efficiently separated and
predicted. It should be noted that no “over-learning” was
encountered for the best networks that were finally selected in
this work.

Conclusion. The HPAEC-PAD method and the numerical
methodology for the construction of the initial data matrix
presented here provide an efficient tool for the characterization
of the honey floral species from ionic chromatographic profiles.
The chromatographic method used in this work presents a good
resolution/time of analysis ratio and shows that the HPAEC-
PAD technique can be used in an automated chemometric
approach for honey characterization.

The two chemometric approaches used for comparison in this
work are equivalent when both clear and dark honeys are treated
together (89.7% by multivariate analysis and 90.7% by ANN).
However, the application of neural networks gives a better result
when the two types of honey samples are separately treated
(92.9% by multivariate analysis and 100% by ANN). The quality
of the results shows that the matrix generated by our algorithm
preserves the information content required for good chemical
data representativeness.

Given that our goal is the elaboration of an automated tool
for the recognition of honey varieties and the detection of their
eventual adulteration, the next step is the utilization of the same
tools for detecting adulterated samples and the determination
of the sensitivity of the method.
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